

Compiled by the 'Solihull LA Primary Mathematics Forum' 2019

Using resources effectively to teach fractions

Through consultation with schools, and question level analysis of 2017 KS2 SAT papers, the primary maths forum identified the need for support with the teaching of fractions. This document offers ideas to teachers demonstrating how to teach fractions through a CPA approach (concrete, pictorial, abstract) progressively from year 1 through to year 6 . The fractions domain has been divided into separate key areas which include

- Counting in fractions
- Recognising and identifying fractions
- Comparing and ordering fractions (incl. equivalence)
- Adding and subtracting fractions
- Multiplying and dividing fractions

For each key area, a variety of ideas are presented illustrating how concrete resources/manipulatives can be used in teaching as well as pictures and images and abstract representations for each concept. Some links between the key areas are made explicit within the document, however teachers are encouraged to look at all areas within their year group (and previous year groups) to gain a wider understanding of progression and the links between concepts.

Some ideas have been inspired by activities found in:

- White Rose Hub materials
- Classroom Secrets
- Twinkl
- Maths No Problem
- Collins Shanghai

Primary Mathematics Forum Contributors: With thanks to:

Helen Dixon - St John the Baptist RC Primary School - Catholic Cluster
Susy Lynn - Shirley Heath Junior School - Evolve Collaborative

Tom Byrom - Oak Cottage Primary School - Evolve Collaborative

Natasha Lines - Yew Tree Primary School - Mosaic Collaborative
Stephen Hainie - St George and St Teresa RC Primary School- Rural Collaborative

Zoe Jeffries - Sharmans Cross Junior - Synergy Collaborative
Lauren Mitchell - Monkspath Primary School - Synergy Collaborative

Andy May - Castle Bromwich Junior School - Unity Collaborative
Joe Staines - Castle Bromwich Nursery and Infant School - Unity Collaborative
Laura Anderson - Lady Katherine Leveson CE Primary School

Loretta Walkerdine - Balsall Common Primary School - Rural Collaborative

Using resources effectively to teach.... COUNTING IN FRACTIONS

告	All of the previous teaching points are applicable to this objective.	Use 100 bead strings to rehearse counting forwards and backwards. Use different starting points and draw discussion into the fact that $1 / 10$ $={ }^{10} / 100$.	As for counting in tenths Use dienes units blocks to represent 1/100 Use pennies to recognise $1 / 100$ of a pound etc										As for counting in tenths 9.8 is equivalent to 980 hundredths, 9.82 is equivalent to ? hundredths. How many hundredths are there in 10.0?				
	understand that one hundredth is the same as dividing by	To start with, use the hundredths counters to embed the idea that 10 hundredths $=1$ tenth. Children can then exchange their ten hundredths for a tenth counter. Start at different points to rehearse counting forwards and backwards.	Decimal Number Chart 0.01-1										Using a partially filled in hundredths square, ask how you know where e.g. 2.76 would go.				
-	100.		0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.2	2.5	2.5			
\%	- Children need to see		0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.3	2	3			
-	and be taught the		0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.4					2.6
	equivalence between		0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.5					7
	multiple hundredths		0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.6					
	and tenths e.g. $/ 100=$ 7		0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.7					
			0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.8	2.82			2.8 6	
			0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.9				2.9	
			0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1					

Obj	Teaching points	Concrete	Pictorial	Abstract
	Children explore finding a half for the first time using shapes, sets of objects and small quantities. They will use the vocabulary 'half' and 'whole'. Children will not be expected to use the fractional notation of $1 / 2$ within their working, but it may be useful to introduce both $1 / 2$ and $2 / 2$ as the fractional representation. It is important that they know that a half means one of two equal parts. Link to measurement Using a number line marked 0 to 1 to introduce the numerical value of a half.	Halve physical objects and shapes Find half of these bears Find half of a jug of water, half the mass of an object or half of a length. Cont...	Colour one half of each shape Using a bar model show one half Find one half of the whole amount part part \square of \square $=4$	Mark on the number line where halfway should be. What is half of the amount shown?

Year 1: Recognise, find and name a quarter as one of four equal parts of an object, shape and quantity)	Children explore finding a quarter for the first time using shapes, sets of objects and small quantities. They will use the vocabulary 'quarter' and 'whole'. Children will not be expected to use the fractional notation of $1 / 4$ within their working, but it may be useful to introduce both $1 / 4$ and $4 / 4$ as the fractional representation. It is important that they know that a quarter means one of four equal parts. Link to measurement Using a number line marked 0 to 1 to introduce the numerical value of a quarter.		Which shape has been split into quarters? Shade one quarter of each shape Find a quarter of objects Represent a quarter on a bar model Look at an amount as a whole and a quarter as one of four equal parts	6a. Aisha says: A quarter of this shape is coloured in. Is she right? Explain your answer. True or false? Sharing 8 apples between 4 children means each child has 1 apple. less than a quarter exactly a quarter more than a quarter Colour the shapes to match the labels

Year 2: Recognise, find, name and write one third $\left({ }^{1} / 3\right)$ of length, shape, set of objects or quantity (Y2)	Children explore finding a third for the first time using shapes, sets of objects and small quantities. They will use the vocabulary 'third' and 'whole'. Children will not be expected to use the fractional notation of $1 / 3$ within their working, but it may be useful to introduce both $1 / 3$ and $3 / 3$ as the fractional representation. It is important that they know that a third means one of three equal parts. (Y2) Link to measurement Using a number line marked 0 to 1 to introduce the numerical value of a third.	Strips of paper for children to find 1 out of 3 equal parts Using counters to show the equal parts. Fraction cards	Part whole diagrams to show 3 equal parts Bar model $\frac{1}{3}$ Is this $1 / 3$ of this shape? Explain how you know.	Is $1 / 3$ of 9 greater than $1 / 2$ of 4 ? See similar questions to halves.

Year 2: Recognise, find, name and write quarters $\left({ }^{1} / 4^{2} /{ }^{3}{ }^{3} / 4\right)$ of length, shape, set of objects or quantity	4/4 link to counting in fractions - the need to see wholes	Practically investigating quarters. Folding paper to explore fractions	Name the fractions shown Children to use bar models to visually represent quarters? What is $3 / 4$ of 20 ? Are all of these showing quarters?	```Is \(1 / 4\) of 8 less than \(3 / 4\) of 4 ?``` Estimate the position of $1 / 3,1 / 4$ and $3 / 4$ $\begin{aligned} & 1 / 4 \text { of } 4=1 \\ & 1 / 4 \text { of } 8=2 \\ & 1 / 4 \text { of } 12=3 \end{aligned}$ Continue the pattern What do you notice? True or false? Half of $20 \mathrm{~cm}=5 \mathrm{~cm}$ $3 / 4$ of $12 \mathrm{~cm}=9 \mathrm{~cm}$

Using resources effectively to teach... COMPARING FRACTIONS

\begin{tabular}{|c|c|c|c|c|}
\hline Obj \& Teaching points \& Concrete \& Pictorial \& Abstract \\
\hline \& \begin{tabular}{l}
Unit fractions are fractions with a numerator that is 1 . \\
Language to be used is: compare order greater than and less than equal parts numerator denominator
\end{tabular} \& \begin{tabular}{l}
Equipment that could be used: Paper strips; Counters; Cubes; Fraction tiles; Fraction rods; Cuisenaire rods \\
E.g. Compare fractions using counters and other objects as shown below \\
Paper strips can be used to help compare fractions. Ensure that the paper strips are of equal size. \\
Use cube towers to compare fractions.
\end{tabular} \& \begin{tabular}{l}
This could begin by using paper strips before exposing children to pictorial representations such as: \\
Order the fractions in each row from smallest to largest. Use 1 for the smallest and 4 for the largest fraction.
\(\square\)
\(\square\)
\(\square\)
\(\square\)

 \&

For example:

Compare using $=$, < or > $1 / 2,1 / 5,1 / 3, \quad 3 / 4$ Compare using $=$, <or > $2 / 7, \quad 5 / 7, \quad 4 / 8, \quad 5 / 8$

1 \square 3 4 4 $\frac{1}{4}<\frac{B}{C}$

Order the following fractions from smallest to largest:
\end{tabular}

\hline
\end{tabular}

Using resources effectively to teach.... + AND - FRACTIONS

Obj	Teaching points	Concrete	Pictorial	Abstract
Year 3: Add and subtract fractions with the same denominator within one whole	To add and subtract fractions, the denominators must be the same.	Provide pupils with a strawberry tart cut into eighths and an identically sized and cut blank copy. Collins Shanghai Y3 Unit 8.4 Determine that each part represents one eighth of the tart because the whole has been divided into eight equal parts. Get the children to cut out each part of the pie and label them as $\frac{1}{8}$. Hold up one piece in each hand and elicit that this is $\frac{2}{8}$. Record the calculation: $\frac{1}{8}+\frac{1}{8}=\frac{2}{8}$. Relate the common denominators to the number of equal pieces of the tart, and then discuss how by adding two of them together they get $\frac{2}{8}$. Ask what would happen if one more eighth was added to the new strawberry tart. Stick another eighth on to get $\frac{3}{8}$. Continue this process. Put the final piece on and remind the children that $\frac{8}{8}$ is the same as one whole (strawberry tart). Cont...	Count up and down in fraction amounts on a number line. Twinkl Count up in fraction amounts using paper cards. I See Cont...	Make sure the numerators are the same, then add the denominators. e.g. $\frac{3}{8}+\frac{2}{8}=\frac{5}{8}$ $\frac{4}{6}-\frac{1}{6}=$

	To add and subtract fractions, the denominators must be the same.	As before, use cubes and numicon to create the fractions: $\frac{11}{6}-\frac{\square}{6}=\frac{\square}{6}$	Count up and down in fraction amounts on a number line. Twinkl Count up in fraction amounts using paper cards. I See	Make sure the numerators are the same, then add the denominators. If your answer is an improper fraction, convert it to a mixed number if the problem requires it. e.g. $\frac{7}{9}+\frac{4}{9}=\frac{11}{9}$ or $1 \frac{2}{9}$

	Refer to appendix for methods 1 and 2 for adding and subtracting fractions.	Addition Example: $3 \frac{5}{7}+2 \frac{4}{7}$ Use the same method as previously with the strips, but get the children to cut up the fraction elements into the component sevenths. This would leave 5 wholes (5 strips of $\frac{7}{7}$) and nine $\frac{1}{7}$ parts. Elicit that nine $\frac{1}{7}$ parts is the same as $\frac{9}{7}$ or $1 \frac{2}{7}$ parts. Combine 5 with $1 \frac{2}{7}$ to get the answer of $6 \frac{2}{7}$ Subtraction Example: $4 \frac{2}{7}-2 \frac{5}{7}$ Use the same method as previously with the strips, but get the children to cut up the fraction elements into the component sevenths. This would leave 2 wholes (2 strips of $\frac{7}{7}$) but then they would realise that they cannot take $\frac{5}{7}$ away from $\frac{2}{7}$. Discuss what could be done next. Elicit that they could cut one of their two wholes into $\frac{7}{7}$. Going back to their original $4 \frac{2}{7}$ they would the repartition that into $3 \frac{9}{7}$. With $3 \frac{9}{7}$ in strips, they could remove the 2 wholes then the $\frac{4}{7}$ leaving them with $1 \frac{5}{7}$.		$1 \frac{2}{3}+$ \square 嶵 $2 \frac{3}{5}$ Calculate $3 \frac{1}{4}-1 \frac{3}{4}$ $3 \frac{1}{4}$ can become $2 \frac{5}{4}$ \square \square		For example $\begin{aligned} & 3 \frac{3}{4}+\frac{7}{5}=5 \frac{3}{20} \\ & 11 \frac{3}{4}-7 \frac{5}{6}=3 \frac{11}{12} \end{aligned}$

Using resources effectively to teach.... X AND \div FRACTIONS

Obj	Teaching points	Concrete	Pictorial	Abstract
	When multiplying fractions by a whole integer, children will need to understand why it is only the numerator that changes - the denominator remains the same Explain the mistake: $\frac{3}{4} \times 5=\frac{15}{20}$ Build in opportunities to discuss misconceptions and mistakes that could occur.	Use Cuisenaire Rods and fraction towers to demonstrate multiplying fractions by an integer. Using fraction towers to demonstrate the abstract: ' 3 lots of $1 / 4=$ ' 2 lots of ${ }^{2} / 6=$ Use bar models to work out $3 \times 3 / 4=$ Use a number line to work it out:	Use a diagram to represent multiplying fractions. Build an array (as used when multiplying whole numbers For example $1 / 4 \times 2 / 4$ Draw a bar and shade $1 / 4$ Draw an adjoining column and shade $2 / 4$. The shaded cells represent the total.(2/16 or $1 / 8$)	Solve: $\begin{aligned} & \frac{2}{-} \times-=\frac{6}{20}=- \\ & -\times \frac{10}{5}=\frac{10}{60}=- \end{aligned}$ How many ways can you answer the following? $\begin{aligned} \text { cyly } x-3 & =\frac{6}{12} \\ & =\frac{2}{2} \end{aligned}$ In each number sentence, replace the boxes with different whole numbers less than 20 so that the number sentence is true. Cont...

Appendix 1

Adding and subtracting fractions

Method 1

Method 1 keeps the whole numbers and fraction parts separate largely, which is often conceptually easier for children. However, the exchange of one whole for an equivalent fraction when bridging is required in subtraction can prove difficult.

Adding Fractions Method 1

1. Add whole number parts.
2. Make sure the denominators are the same if they are not already.
3. Add the numerators.
4. Simplify if possible.
5. Add up the whole number part and the fraction part if we need to.

Example 1: $2 / 5+4 / 5$

1. No whole numbers to include.
2. Denominators are already the same.
3. Add the numerators. $2 / 5+4 / 5=6 / 5$.
4. $6 / 5$ simplifies to $11 / 5$.
5. No whole number parts to add up, so $1 \mathbf{1 / 5}$ is our answer.

Example 2: 9 2/3+64/5

1. Add up the whole numbers: $9+6=15$ (keep that for later).
2. Make the denominators the same. Thirds and fifths can both be converted to fifteenths. $2 / 3=10 / 15$ (multiplying numerator and denominator by 5 to keep the fraction equivalent). $4 / 5=12 / 15$ (multiplying numerator and denominator by 3 to keep the fraction equivalent).
3. Add the numerators. $10 / 15+12 / 15=22 / 15$
4. There are $15 / 15$ in one whole, so we can simplify this to $17 / 15$.
5. Add the two parts together: $15+17 / 15=16 \mathbf{7 / 1 5}$

Example 3: 3 3/4+7/5

1. $7 / 5$ is an improper fraction; we convert it to $12 / 5$. Add up the whole numbers: $3+1=4$ (keep that for later).
2. Make the denominators the same. Quarters and fifths can both be converted to twentieths. $3 / 4=15 / 20$ (multiplying numerator and denominator by 5 to keep the fraction equivalent). $2 / 5=8 / 20$ (multiplying numerator and denominator by 4 to keep the fraction equivalent).
3. Add the numerators. $15 / 20+8 / 20=23 / 20$
4. There are $20 / 20$ in one whole, so we can simplify this to $13 / 20$.
5. Add the two parts together: $4+13 / 20=5 \mathbf{3 / 2 0}$

Subtracting Fractions Method 1a

1. Subtract whole number parts.
2. Make sure the denominators are the same if they are not already.
3. If the left-side fraction part is smaller than the right-side fraction part, we need to exchange one whole from our whole number part to make the right-side fraction part big enough.
4. Subtract the numerators.
5. Simplify if possible.
6. Add up the whole number part and the fraction part if we need to.

Example 1: 7/8-1/4

1. No whole number parts to subtract.
2. Make the denominators the same. Quarters can be converted to eighths. $1 / 4=2 / 8$ (multiplying numerator and denominator by 2 to keep the fraction equivalent). We now have $7 / 8-2 / 8$.
3. The left-side fraction is big enough.
4. Subtract the numerators. $7 / 8-2 / 8=5 / 8$.
5. $5 / 8$ does not simplify.
6. There is no whole number part here. Our answer is $5 / 8$.

Example 2: 11 3/4-75/6

1. Subtract whole number parts. $11-7=4$ (keep that for later).
2. Make the denominators the same. Quarters and sixths can be converted to twelfths. $3 / 4=9 / 12$ (multiplying numerator and denominator by 3 to keep the fraction equivalent). $5 / 6=10 / 12$ (multiplying numerator and denominator by 2 to keep the fraction equivalent). We now have $9 / 12-$ 10/12.
3. The left-side fraction is smaller than the right-side fraction, so we need to make it bigger. We do this by exchanging one from our whole number part for $12 / 12$. Our whole number part is now 3 . By adding $12 / 12$ to $9 / 12$, our fraction calculation is now 21/12-10/12 .
4. Subtract the numerators. $21 / 12-10 / 12=11 / 12$.
5. $11 / 12$ does not simplify.
6. Add together the whole number and fraction parts. $3+11 / 12=\mathbf{3 1 1 / 1 2}$.

Subtracting Fractions Method 1b

1. Make sure the denominators are the same if they are not already.
2. If the left-side fraction part is smaller than the right-side fraction part, we need to exchange one whole from our whole number part to make the right-side fraction part big enough.
3. Subtract whole number parts.
4. Subtract the numerators.
5. Simplify if possible.
6. Add up the whole number part and the fraction part if we need to.

Example 1: 7/8-1/4

1. Make the denominators the same. Quarters can be converted to eighths. $1 / 4=2 / 8$ (multiplying numerator and denominator by 2 to keep the fraction equivalent). We now have 7/8-2/8.
2. The left-side fraction is big enough.
3. There are no whole number parts to subtract.
4. Subtract the numerators. $7 / 8-2 / 8=5 / 8$.
5. $5 / 8$ does not simplify.
6. There is no whole number part here. Our answer is 5/8.

Example 2: 11 3/4-75/6

1. Make the denominators the same. Quarters and sixths can be converted to twelfths. $3 / 4=9 / 12$ (multiplying numerator and denominator by 3 to keep the fraction equivalent). $5 / 6=10 / 12$ (multiplying numerator and denominator by 2 to keep the fraction equivalent). We now have $9 / 12-$ 10/12.
2. The left-side fraction is smaller than the right-side fraction, so we need to make it bigger. We do this by exchanging one from our whole number part for $12 / 12$. Our whole number part on the left is 11 , so that now becomes 10 . By adding $12 / 12$ to $9 / 12$, our fraction calculation is now $21 / 12-$ 10/12.
3. This makes our new calculation $1021 / 12-710 / 12$. Subtract whole number parts. $10-7=3$.
4. Subtract the numerators. $21 / 12-10 / 12=11 / 12$.
5. $11 / 12$ does not simplify.
6. Add together the whole number and fraction parts. $3+11 / 12=\mathbf{3 1 1 / 1 2}$

Method 2

Method 2 converts mixed numbers to improper fractions. This simplifies trickier calculations involving bridging. However, arithmetic errors are more likely to occur using this method, and this risk grows in proportion with the value of the numbers involved.

Adding Fractions Method 2

1. Make sure the denominators are the same if they are not already.
2. If they are mixed numbers, convert them to improper fractions.
3. Add the numerators.
4. Convert any improper fractions back to mixed numbers if required.
5. Simplify if possible.

Example 1: 2/5+4/5

1. Denominators are already the same.
2. Proper fractions with no whole numbers, so no need to convert.
3. Add the numerators. $2 / 5+4 / 5=6 / 5$.
4. $6 / 5$ converts to $11 / 5$.
5. Nothing to simplify. Answer is $\mathbf{1 1 / 1 5}$.

Example 2: 9 2/3+64/5

1. Make the denominators the same. Thirds and fifths can both be converted to fifteenths. $2 / 3=10 / 15$ (multiplying numerator and denominator by 5 to keep the fraction equivalent). $4 / 5=12 / 15$ (multiplying numerator and denominator by 3 to keep the fraction equivalent).
2. They are mixed numbers. Convert $910 / 15$ to $145 / 15$ and $612 / 15$ to 102/15.
3. Add the numerators. $145 / 15+102 / 15=247 / 15$.
4. $247 / 15$ converts to $167 / 15$.
5. Nothing to simplify. Answer is $\mathbf{1 6 7 / 1 5}$.

Subtracting Fractions Method 2

1. Make sure the denominators are the same if they are not already.
2. If they are mixed numbers, convert them to improper fractions.
3. Do left numerators subtract right numerator.
4. Convert any improper fractions back to mixed numbers if required.
5. Simplify if possible.

Example 1: 7/8-1/4

1. Make the denominators the same. Quarters can be turned into eighths. $1 / 4=2 / 8$ (multiplying numerator and denominator by 2 to keep the fraction equivalent).
2. Proper fractions with no whole numbers, so no need to convert.
3. Subtract the numerators. $7 / 8-2 / 8=5 / 8$.
4. $5 / 8$ is a proper fraction, so nothing to convert.
5. Nothing to simplify. Answer is $5 / 8$.

Example 2: 11 3/4-75/6

1. Make the denominators the same. Quarters and sixths can both be converted to twelfths. $3 / 4=9 / 12$ (multiplying numerator and denominator by 3 to keep the fraction equivalent). $5 / 6=10 / 12$ (multiplying numerator and denominator by 2 to keep the fraction equivalent).
2. They are mixed numbers. Convert $119 / 12$ to $141 / 12$ and $710 / 12$ to $94 / 12$.
3. Subtract the numerators. 141/12-94/12=147/12.
4. $147 / 12$ converts to $123 / 12$.
5. $3 / 12$ simplifies to $1 / 4$ (dividing numerator and denominator by 3 to keep the fraction equivalent). Answer is $\underline{\mathbf{1 2} \mathbf{1 / 4}}$.
